Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(13): 6007-6018, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38513264

RESUMEN

Knowledge gaps in mercury (Hg) biomagnification in forest birds, especially in the most species-rich tropical and subtropical forests, limit our understanding of the ecological risks of Hg deposition to forest birds. This study aimed to quantify Hg bioaccumulation and transfer in the food chains of forest birds in a subtropical montane forest using a bird diet recorded by video and stable Hg isotope signals of biological and environmental samples. Results show that inorganic mercury (IHg) does not biomagnify along food chains, whereas methylmercury (MeHg) has trophic magnification factors of 7.4-8.1 for the basal resource-invertebrate-bird food chain. The video observations and MeHg mass balance model suggest that Niltava (Niltava sundara) nestlings ingest 78% of their MeHg from forest floor invertebrates, while Flycatcher (Eumyias thalassinus) nestlings ingest 59% from emergent aquatic invertebrates (which fly onto the canopy) and 40% from canopy invertebrates. The diet of Niltava nestlings contains 40% more MeHg than that of Flycatcher nestlings, resulting in a 60% higher MeHg concentration in their feather. Hg isotopic model shows that atmospheric Hg0 is the main Hg source in the forest bird food chains and contributes >68% in most organisms. However, three categories of canopy invertebrates receive ∼50% Hg from atmospheric Hg2+. Overall, we highlight the ecological risk of MeHg exposure for understory insectivorous birds caused by atmospheric Hg0 deposition and methylation on the forest floor.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Animales , Mercurio/análisis , Cadena Alimentaria , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Bosques , Invertebrados , Aves , Isótopos , Isótopos de Mercurio/análisis
2.
Environ Sci Technol ; 58(11): 4968-4978, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38452105

RESUMEN

Knowledge gaps of mercury (Hg) biogeochemical processes in the tropical rainforest limit our understanding of the global Hg mass budget. In this study, we applied Hg stable isotope tracing techniques to quantitatively understand the Hg fate and transport during the waterflows in a tropical rainforest including open-field precipitation, throughfall, and runoff. Hg concentrations in throughfall are 1.5-2 times of the levels in open-field rainfall. However, Hg deposition contributed by throughfall and open-field rainfall is comparable due to the water interception by vegetative biomasses. Runoff from the forest shows nearly one order of magnitude lower Hg concentration than those in throughfall. In contrast to the positive Δ199Hg and Δ200Hg signatures in open-field rainfall, throughfall water exhibits nearly zero signals of Δ199Hg and Δ200Hg, while runoff shows negative Δ199Hg and Δ200Hg signals. Using a binary mixing model, Hg in throughfall and runoff is primarily derived from atmospheric Hg0 inputs, with average contributions of 65 ± 18 and 91 ± 6%, respectively. The combination of flux and isotopic modeling suggests that two-thirds of atmospheric Hg2+ input is intercepted by vegetative biomass, with the remaining atmospheric Hg2+ input captured by the forest floor. Overall, these findings shed light on simulation of Hg cycle in tropical forests.


Asunto(s)
Mercurio , Mercurio/análisis , Bosque Lluvioso , Monitoreo del Ambiente/métodos , Bosques , Agua
3.
Environ Sci Technol ; 57(45): 17490-17500, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37908057

RESUMEN

The karst forest is one of the extremely sensitive and fragile ecosystems in southwest China, where the biogeochemical cycling of mercury (Hg) is largely unknown. In this study, we investigated the litterfall deposition, accumulation, and soil migration of Hg in an evergreen-deciduous broadleaf karst forest using high-resolution sampling and stable isotope techniques. Results show that elevated litterfall Hg concentrations and fluxes in spring are due to the longer lifespan of evergreen tree foliage exposed to atmospheric Hg0. The hillslope has 1-2 times higher litterfall Hg concentration compared to the low-lying land due to the elevated atmospheric Hg levels induced by topographical and physiological factors. The Hg isotopic model suggests that litterfall Hg depositions account for ∼80% of the Hg source contribution in surface soil. The spatial trend of litterfall Hg deposition cannot solely explain the trend of Hg accumulation in the surface soil. Indeed, soil erosion enhances Hg accumulation in soil of low-lying land, with soil Hg concentration up to 5-times greater than the concentration on the hillslope. The high level of soil Hg migration in the karst forest poses significant ecological risks to groundwater and downstream aquatic ecosystems.


Asunto(s)
Mercurio , Contaminantes del Suelo , Mercurio/análisis , Ecosistema , Monitoreo del Ambiente/métodos , Bosques , Suelo
4.
Environ Sci Technol ; 57(43): 16512-16521, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37857302

RESUMEN

Understanding mercury (Hg) complexation with soil organic matter is important in assessing atmospheric Hg accumulation and sequestration processes in forest ecosystems. Separating soil organic matter into particulate organic matter (POM) and mineral-associated organic matter (MAOM) can help in the understanding of Hg dynamics and cycling due to their very different chemical constituents and associated formation and functioning mechanisms. The concentration of Hg, carbon, and nitrogen contents and isotopic signatures of POM and MAOM in a deglaciated forest chronosequence were determined to construct the processes of Hg accumulation and sequestration. The results show that Hg in POM and MAOM are mainly derived from atmospheric Hg0 deposition. Hg concentration in MAOM is up to 76% higher than that in POM of broadleaf forests and up to 60% higher than that in POM of coniferous forests. Hg accumulation and sequestration in organic soil vary with the vegetation succession. Variations of δ202Hg and Δ199Hg are controlled by source mixing in the broadleaf forest and by Hg sequestration processes in the coniferous forest. Accumulation of atmospheric Hg and subsequent microbial reduction enrich heavier Hg isotopes in MAOM compared to POM due to the specific chemical constituents and nutritional role of MAOM.


Asunto(s)
Mercurio , Mercurio/análisis , Ecosistema , Bosques , Minerales , Suelo/química , Polvo , Material Particulado , Monitoreo del Ambiente/métodos
5.
Adv Sci (Weinh) ; 10(31): e2304108, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37702128

RESUMEN

In this study, the potential of complex emulsions is investigated as transducers in sensing applications. Complex emulsions are stabilized without external detergents by developing a novel α-cyanostilbene substituted with PEG and semi-perfluoroalkyl chain (CNFCPEG). CNFCPEG exhibits unique variable emission properties depending on its aggregation state, allowing dual blue and green emissions in complex emulsions with hydrocarbon-in-fluorocarbon-in-water (H/F/W) morphology. The green excimer emissions result from the self-assembly of CNFCPEG at the fluorocarbon/water interface, while the blue emission observed is due to aggregation in the organic phase. A novel flow-injection method is developed by incorporating complex emulsions with CNFCPEG into multiple-well flow chips (MWFC). Iodine is successfully detected in a mobile aqueous solution by monitoring morphology changes. The findings demonstrate that self-stabilized complex emulsions with MWFC hold great promise for real-time sensing without costly instruments.

6.
Anal Chem ; 95(33): 12290-12297, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37605798

RESUMEN

Measuring the isotopic composition of Hg in natural waters is challenging due to the ultratrace level of aqueous Hg (ng L-1). At least 5 ng of Hg mass is required for Hg isotopic analysis. Given the low Hg concentration in natural waters, a large volume of water (>10 L) is typically needed. The conventional grab sampling method is time-consuming, laborious, and prone to contamination during transportation and preconcentration steps. In this study, a DGT (diffusive gradients in thin films) method based on aminopropyl and mercaptopropyl bi-functionalized SBA-15 nanoparticles was developed and extended to determine the concentration and isotopic composition of aqueous Hg for the first time. The results of laboratory analysis showed that Hg adsorption by DGT induces ∼ -0.2‰ mass-dependent fractionation (MDF) and little mass-independent fractionation (MIF). The magnitude of MDF exhibits a dependence on the diffusion-layer thickness of DGT. Since Hg-MDF can occur in a broad range of environmental processes, monitoring the δ202Hg of aqueous Hg using the DGT method should be performed with caution. Field results show consistent MIF signatures (Δ199Hg) between the DGT and conventional grab sampling method. The developed DGT method serves as a passive sampling method that effectively characterizes the MIF of Hg in waters to understand the biogeochemical cycle of Hg at contaminated sites.

7.
Environ Pollut ; 335: 122291, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37527757

RESUMEN

Ambient ozone (O3) predictions can be very challenging mainly due to the highly nonlinear photochemistry among its precursors, and meteorological conditions and regional transport can further complicate the O3 formation processes. The emission-based chemical transport models (CTM) are broadly used to predict O3 formation, but they may deviate from observations due to input uncertainties such as emissions and meteorological data, in addition to the treatment of O3 nonlinear chemistry. In this study, an innovative recurrent spatiotemporal deep-learning (RSDL) method with model-monitor coupled convolutional recurrent neural networks (ConvRNN) has been developed to improve O3 predictions of CTM. The RSDL method was first used to build the ConvRNN within a 24-h scale to characterize the spatiotemporal relationships between the monitored O3 data and CTM simulations, and then incorporated the recurrent pattern to achieve 72-h multi-site forecasts based on a pilot study over the Pearl River Delta (PRD) region of China. The results showed that the RSDL method predicted O3 with high accuracy over this case study, with an increase of 27.54% in the correlation coefficient (R) average for all sites as well as an increase in R of 0.14-0.21 for all cities compared to CTM. Moreover, the regional distribution of CTM was further improved by the RSDL predictions with the data fusion technique, which greatly reduced the underpredictions of O3 concentrations, particularly in high O3-level areas (concentrations >160 µg/m3), with a 33.55% reduction in the mean absolute error (MAE).


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Aprendizaje Profundo , Ozono , Ozono/análisis , Contaminantes Atmosféricos/análisis , Proyectos Piloto , Monitoreo del Ambiente/métodos , China , Contaminación del Aire/análisis
8.
Environ Sci Technol ; 57(29): 10686-10695, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37437160

RESUMEN

Significant knowledge gaps exist regarding the emission of elemental mercury (Hg0) from the tropical forest floor, which limit our understanding of the Hg mass budget in forest ecosystems. In this study, biogeochemical processes of Hg0 deposition to and evasion from soil in a Chinese tropical rainforest were investigated using Hg stable isotopic techniques. Our results showed a mean air-soil flux as deposition of -4.5 ± 2.1 ng m-2 h-1 in the dry season and as emission of +7.4 ± 1.2 ng m-2 h-1 in the rainy season. Hg re-emission, i.e., soil legacy Hg evasion, induces negative transitions of Δ199Hg and δ202Hg in the evaded Hg0 vapor, while direct atmospheric Hg0 deposition does not exhibit isotopic fractionation. Using an isotopic mass balance model, direct atmospheric Hg0 deposition to soil was estimated to be 48.6 ± 13.0 µg m-2 year-1. Soil Hg0 re-emission was estimated to be 69.5 ± 10.6 µg m-2 year-1, of which 63.0 ± 9.3 µg m-2 year-1 is from surface soil evasion and 6.5 ± 5.0 µg m-2 year-1 from soil pore gas diffusion. Combined with litterfall Hg deposition (∼34 µg m-2 year-1), we estimated a ∼12.6 µg m-2 year-1 net Hg0 sink in the tropical forest. The fast nutrient cycles in the tropical rainforests lead to a strong Hg0 re-emission and therefore a relatively weaker atmospheric Hg0 sink.


Asunto(s)
Mercurio , Mercurio/análisis , Ecosistema , Monitoreo del Ambiente , Bosques , Suelo
9.
Environ Sci Technol ; 57(14): 5903-5912, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36976750

RESUMEN

Long-range transport and atmospheric deposition of gaseous mercury (Hg0) result in significant accumulation of Hg in the Qinghai-Tibetan Plateau (QTP). However, there are significant knowledge gaps in understanding the spatial distribution and source contribution of Hg in the surface soil of the QTP and factors influencing Hg accumulation. In this study, we comprehensively investigated Hg concentrations and isotopic signatures in the QTP to address these knowledge gaps. Results show that the average Hg concentration in the surface soil ranks as follows: forest (53.9 ± 36.9 ng g-1) > meadow (30.7 ± 14.3 ng g-1) > steppe (24.5 ± 16.1 ng g-1) > shrub (21.0 ± 11.6 ng g-1). Hg isotopic mass mixing and structural equation models demonstrate that vegetation-mediated atmospheric Hg0 deposition dominates the Hg source in the surface soil, with an average contribution of 62 ± 12% in forests, followed by 51 ± 10% in shrub, 50 ± 13% in steppe, and 45 ± 11% in meadow. Additionally, geogenic sources contribute 28-37% of surface soil Hg accumulation, and atmospheric Hg2+ inputs contribute 10-18% among the four types of biomes. The Hg pool in 0-10 cm surface soil over the QTP is estimated as 8200 ± 3292 Mg. Global warming, permafrost degradation, and anthropogenic influences have likely perturbed Hg accumulation in the soil of QTP.


Asunto(s)
Mercurio , Contaminantes del Suelo , Isótopos de Mercurio/análisis , Mercurio/análisis , Suelo/química , Tibet , Monitoreo del Ambiente
10.
Sci Total Environ ; 873: 162256, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36805059

RESUMEN

Commercial cooking (CC) is an intensive near-field source contributing to ambient PM2.5 and O3 concentration in urban areas. Compilation of CC emission inventory has been challenging due to the dynamic variation of the emission sector, which has resulted in data deficiencies including underestimated quantity and poor temporal-spatial resolution. In this study, we have developed a methodology that integrates existing emission statistics with online oil fumes monitoring (OOFM) data to create a highly spatiotemporally resolved emission inventory of CC. The new emission estimate differs from legacy inventory in emission quantity and temporal pattern. Using the emission data, the impacts of CC emission on local PM2.5 and O3 were evaluated using WRF-CMAQ and model-monitor data fusion tool of SMAT-CE in Shunde, China. The OOFM data-assisted emission inventory led to improved model performance for both model-predicted PM2.5 and O3 concentrations. The simulation results using the new inventory data showed that the CC emissions contributed 1.25±2 µg/m3 of PM2.5, and accounted for 24±1 % of PM2.5 concentration derived from local anthropogenic emissions. Moreover, a higher contribution of CC to PM2.5 was predicted in areas with elevated CC emissions, while the contribution to O3 was insignificant.

11.
Environ Sci Technol ; 56(19): 14154-14165, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36150175

RESUMEN

Plant roots are responsible for transporting large quantities of nutrients in forest ecosystems and yet are frequently overlooked in global assessments of Hg cycling budgets. In this study, we systematically determined the distribution of total Hg mass and its stable isotopic signatures in a subtropical evergreen forest to elucidate sources of Hg in plant root tissues and the associated translocation mechanisms. Hg stored in roots and its isotopic signatures show significant correlations to those found in surrounding soil at various soil depths. The odd mass-independent fractionation (MIF) of root Hg at a shallow soil depth displays a -0.10‰ to -0.50‰ negative transition compared to the values in aboveground woody biomass. The evidence suggests that root Hg is predominantly derived from surrounding soil, rather than translocation of atmospheric uptake via aboveground tissues. The cortex has a more negative mass-dependent fractionation (MDF) of -0.10‰ to -1.20‰ compared to the soil samples, indicating a preferential uptake of lighter isotopes by roots. The similar MDF and odd-MIF signals found in root components imply limited Hg transport in roots. This work highlights that Hg stored in plant roots is not a significant sink of atmospheric Hg. The heterogeneous distribution of Hg mass in roots of various sizes represents a significant uncertainty of current estimates of Hg pool size in forest ecosystems.


Asunto(s)
Mercurio , Ecosistema , Monitoreo del Ambiente , Bosques , Isótopos , Mercurio/análisis , Isótopos de Mercurio/análisis , Suelo
12.
Environ Sci Technol ; 56(18): 13428-13438, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35960609

RESUMEN

The atmosphere is the primary medium for long-distance transport and transformation of elemental mercury (Hg), a potent neurotoxin. The recent discovery of mass-independent fractionation (MIF) of even-mass Hg isotopes (even-MIF, measured as Δ200Hg and Δ204Hg) in the atmosphere is surprising and can potentially serve as a powerful tracer in understanding Hg biogeochemistry. Far-ultraviolet (UVC) light-induced gas-phase reactions have been suspected as a likely cause for even-MIF, yet the mechanism remains unknown. Here, we present the first experimental evidence of large-scale even-MIF caused by UVC-induced (wavelength: 254 nm) Hg oxidation in synthetic air at the pressure (46-88 kPa) and temperature (233-298 K) resembling those of the lower atmosphere. We observe negatively correlated Δ200Hg and Δ204Hg signatures with values as low as -50‰ and as high as 550‰, respectively, in the remaining atomic Hg pool. The magnitude of even-MIF signatures decreases with decreasing pressure with the Δ200Hg/Δ204Hg ratio being similar to that observed in global precipitation. This even-MIF can be explained by photodissociation of mercuric oxides that are photochemically formed in the UVC-irradiated Hg-O2 system. We propose that similar processes occurring in the atmosphere, where mercuric oxide species serve as intermediates, are responsible for the observed even-MIF in the environment.


Asunto(s)
Mercurio , Neurotoxinas , Fraccionamiento Químico , Monitoreo del Ambiente , Gases , Isótopos , Mercurio/análisis , Compuestos de Mercurio , Isótopos de Mercurio/análisis , Óxidos
13.
Environ Pollut ; 307: 119459, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35568288

RESUMEN

Urban and regional ozone (O3) pollution is a public health concern and causes damage to ecosystems. Due to the diverse emission sources of O3 precursors and the complex interactions of air dispersion and chemistry, identifying the contributing sources of O3 pollution requires integrated analysis to guide emission reduction plans. In this study, the meteorological characteristics leading to O3 polluted days (in which the maximum daily 8-h average O3 concentration is higher than the China Class II National O3 Standard (160 µg/m3)) in Guangzhou (GZ, China) were analyzed based on data from 2019. The O3 formation regimes and source apportionments under various prevailing wind directions were evaluated using a Response Surface Modeling (RSM) approach. The results showed that O3 polluted days in 2019 could be classified into four types of synoptic patterns (i.e., cyclone, anticyclone, trough, and high pressure approaching to sea) and were strongly correlated with high ambient temperature, low relative humidity, low wind speed, variable prevailing wind directions. Additionally, the cyclone pattern strongly promoted O3 formation due to its peripheral subsidence. The O3 formation was nitrogen oxides (NOx)-limited under the northerly wind, while volatile organic compounds (VOC)-limited under other prevailing wind directions. Anthropogenic emissions contributed largely to the O3 formation (54-78%) under the westerly, southwesterly, easterly, southeasterly, or southerly wind, but only moderately (35-47%) under the northerly or northeasterly wind. Furthermore, as for anthropogenic contributions, local emission contributions were the largest (39-60%) regardless of prevailing wind directions, especially the local NOx contributions (19-43%); the dominant upwind regional emissions contributed 12-46% (e.g., contributions from Dongguan were 12-20% under the southeasterly wind). The emission control strategies for O3 polluted days should focus on local emission sources in conjunction with the emission reduction of upwind regional sources.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , China , Ecosistema , Monitoreo del Ambiente/métodos , Meteorología , Ozono/análisis
14.
Environ Sci Process Impacts ; 24(5): 634-648, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35485580

RESUMEN

Mercury (Hg) is a toxic metal released into the environment through human activities and natural processes. Human activities have profoundly increased the amount of Hg in the atmosphere and altered its global cycling since the Industrial Revolution. Gaseous elemental Hg is the predominant form of Hg in the atmosphere, which can undergo long-range transport and atmospheric deposition into the aquatic systems. Hg deposition elevates the methylmercury (MeHg) level in fish through bioaccumulation and biomagnification, which poses a serious human health risk. Acute poisoning of MeHg can result in Minamata disease, while low-level long-term exposure in pregnant women can reduce the intelligence quotient of infants. After five sessions of intergovernmental negotiation, the Minamata Convention on mercury entered into force in August 2017 to protect human health and the environment from Hg pollution. Currently China contributes the largest quantity of Hg production, consumption, and emission globally. However, the status of Hg pollution in the environment in China and its associated health risk remains relatively unknown, which hinders the development of implementation plans of the Minamata Convention. In this paper, we provide a comprehensive review on the atmospheric release of Hg, distribution of air Hg concentration, human exposure to MeHg and health impacts caused by Hg pollution in China. Ongoing improvement of air pollution control measures is expected to further decrease anthropogenic Hg emissions in China. Air Hg concentrations in China are higher than the background values in the Northern Hemisphere, with spatial distribution largely influenced by anthropogenic emissions. Long-term observations of GEM in China show a decline in recent years. The net Hg transport outflow from China in 2013 is estimated to be 511 t year-1, and ∼60% of such outflow is caused by natural surface Hg emissions. Hg concentrations in fish and rice in China are relatively low and therefore the associated risks of human Hg exposure are low. Future research needs and recommendations for the implementation of the Minamata Convention are also discussed in this paper.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Animales , China , Monitoreo del Ambiente , Contaminación Ambiental , Femenino , Peces , Humanos , Mercurio/análisis , Embarazo
15.
Environ Sci Technol ; 56(9): 5950-5959, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35420795

RESUMEN

Vegetation uptake represents the dominant route of Hg input to terrestrial ecosystems. However, this plant-directed sink is poorly constrained due to the challenges in measuring the net Hg0 exchange on the ecosystem scale over a long period. Particularly important is the contribution in the subtropics/tropics, where the bulk (∼70%) of the Hg0 deposition is considered to occur. Using the relaxed eddy accumulation technique, this study presents for the first time a whole ecosystem Hg0 flux record over an evergreen hardwood forest. This tower-based micrometeorological method gauged a cumulated net Hg0 flux of -41.1 µg m-2 over 16 months, suggesting that the subtropical montane forest acts as a large and continuous sink of atmospheric Hg0. The monthly net fluxes were consistently negative (-7.3 to -1.0 µg m-2 month-1) throughout the year, with the smallest absolute values occurring during the mild and dry subseason in spring, which was also the annual lowest in vegetation activity. Colocated measurements of multilevel gradients of Hg0 concentration and its stable isotopic composition support the finding of year-round Hg0 deposition. The stable Hg isotope measurements also show that in-canopy bi-directional Hg0 exchange is prevalent.


Asunto(s)
Ecosistema , Mercurio , Monitoreo del Ambiente/métodos , Bosques , Isótopos , Mercurio/análisis
16.
Environ Sci Technol ; 55(19): 13376-13386, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34520177

RESUMEN

We have investigated the chemistry and Hg isotope fractionation during the aqueous reduction of HgII by oxalic acid, p-quinone, quinol, and anthraquinone-2,6-disulfonate (AQDS), a derivate of anthraquinone (AQ) that is found in secondary organic aerosols (SOA) and building blocks of natural organic matter (NOM). Each reaction was examined for the effects of light, pH, and dissolved O2. Using an excess of ligand, UVB photolysis of HgII was seen to follow pseudo-first-order kinetics, with the highest rate of ∼10-3 s-1 observed for AQDS and oxalic acid. Mass-dependent fractionation (MDF) occurs by the normal kinetic isotope effect (KIE). Only the oxalate ion, rather than oxalic acid, is photoreactive when present in HgC2O4, which decomposes via two separate pathways distinguishable by isotope anomalies. Upon UVB photolysis, only the reduction mediated by AQDS results in a large odd number mass-independent fractionation (odd-MIF) signified by enrichment of odd isotopes in the reactant. Consistent with the rate, MDF, and odd-MIF reported for fulvic acid, our AQDS result confirms previous assumptions that quinones control HgII reduction in NOM-rich waters. Given the magnitude of odd-MIF triggered via a radical pair mechanism and the significant rate in the presence of air, reduction of HgII by photoproducts of AQDS may help explain the positive odd-MIF observed in ambient aerosols depleted of HgII.


Asunto(s)
Mercurio , Fraccionamiento Químico , Isótopos , Ligandos , Isótopos de Mercurio
17.
Environ Sci Technol ; 55(18): 12352-12361, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34449213

RESUMEN

Air-soil exchange of elemental mercury vapor (Hg0) is an important component in the budget of the global mercury cycle. However, its mechanistic detail is poorly understood. In this study, stable Hg isotopes in air, soil, and pore gases are characterized in a subtropical evergreen forest to understand the mechanical features of the air-soil Hg0 exchange. Strong HgII reduction in soil releases Hg0 to pore gas during spring-autumn but diminishes in winter, limiting the evasion in cold seasons. Δ199Hg in air modified by the Hg0 efflux during flux chamber measurement exhibit seasonality, from -0.33 ± 0.05‰ in summer to -0.08 ± 0.05‰ in winter. The observed seasonal variation is caused by a strong pore-gas driven soil efflux caused by photoreduction in summer, which weakens significantly in winter. The annual Hg0 gross deposition is 42 ± 33 µg m-2 yr-1, and the corresponding Hg0 evasion from the forest floor is 50 ± 41 µg m-2 yr-1. The results of this study, although still with uncertainty, offer new insights into the complexity of the air-surface exchange of Hg0 over the forest land for model implementation in future global assessments.


Asunto(s)
Mercurio , Contaminantes del Suelo , Monitoreo del Ambiente , Bosques , Mercurio/análisis , Isótopos de Mercurio/análisis , Suelo , Contaminantes del Suelo/análisis
18.
Angew Chem Int Ed Engl ; 60(23): 12712-12716, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33709468

RESUMEN

Rational syntheses under controllable reducing conditions in the preparation of superatoms with cluster electron number not exceeding two are challenging. Herein a dithiolate-stabilized two-electron silver nanocluster, Ag10 {S2 P(Oi Pr)2 }8 (1), is isolated via a self-redox reaction of Ag7 (H){S2 P(Oi Pr)2 }6 without adding extra reducing agents. The metal framework of Ag7 , a bicapped trigonal bipyramid, is highly correlated to that of Ag10 , suggesting Ag7 (H){S2 P(Oi Pr)2 }6 acts as both reducing agent and template in cluster growth. 1 is highly fluorescent at ambient temperature and TD-DFT calculations indicate that the emission is of 1Px →1S nature.

19.
Environ Sci Pollut Res Int ; 28(27): 36573-36584, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33704635

RESUMEN

Although electrochemical disinfection has been shown to be an effective approach to inactivate bacteria in saline water, the effects of process parameters and reactor design for its application in low-salinity water have not been well understood. In this study, factorial experiments were performed to investigate the direct and confounded effects of applied current (5-20 mA), contact time (2.5-20 min), anode surface area (185-370 cm2), and chloride concentration (50-400 mg L-1) on the disinfection efficiency in fresh water and the secondary effluent of municipal wastewater. An electrochemical disinfection reactor cell with an internal volume of 75 cm3 was designed and fabricated. Residence time distribution analysis showed that the internal mixing of the reactor is similar to that of a dispersed plug-flow reactor. All studied process parameters showed significant effect on the kill efficiency, with the applied current and contact time having the most dominant effect. Although the effect of chloride concentration, which is responsible for electrochemical production of free chlorine in water, is statistically significant, it is not as prominent as those reported for high salinity water. A synergistic effect between chloride concentration and anode surface area was identified, leading to high kill efficiency (99.9%, 3 log kill) at low current density (0.0135 mA cm-2). Response surface modeling results suggested that a scaled-up disinfection reactor can be designed using large anode surface area with long contact time for high chloride water (400 mg L-1) or high current density with short contact time for low chloride water (50 mg L-1). The power requirement of a portable system treating 37.85 m3 day-1 (10,000 gpd) of municipal wastewater was estimated to be 1.9 to 8.3 kW to achieve a 3 log kill, depending on the reactor design.


Asunto(s)
Aguas Residuales , Purificación del Agua , Cloro , Desinfección , Electrodos
20.
J Hazard Mater ; 415: 125678, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-33765566

RESUMEN

The accuracy of mercury (Hg) dendrochemistry has been questioned because significant knowledge gaps exist in understanding the Hg translocation and mobility in tree-ring. In this study, we evaluated Hg concentrations and isotopic profiles in the tree-ring at a Hg artisanal mining site and a control site with the documented local Hg production inventory. Results show that the Hg concentration accumulated in tree-ring fails to reconstruct the temporal trend of Hg production due to confounded tree physiological and environmental factors, specifically, the radial translocation and tree age effects occurring during the fast-growing period. The temporal profiles of δ202Hg exhibit pronounced tree-specific variabilities due to the complexity of Hg isotopic mass dependent fractionation during atmospheric Hg uptake and translocation in vegetation. The Hg odd-MIF (mass independent fractionation) profiles in tree-ring can reconstruct a decadal-scale temporal trend of the atmospheric Hg0 pollution level, and also be used as a tracer to distinguish the emission source shifts of atmospheric Hg0. However, the radial translocation would result in uncertainties at the higher resolution because of the mixing of odd-MIF signatures with active rings. Caution should be taken and additional supporting evidence collected from independent methods should be used for verifying the tree-ring records.


Asunto(s)
Mercurio , Pinus , Monitoreo del Ambiente , Isótopos , Mercurio/análisis , Isótopos de Mercurio/análisis , Minería
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...